
Batman Code

DefaultState (.c)

Module level variables – int basket, int timerInterval, uint8_t MyPriority, DefaultState CurrentState

InitDefaultSM

Takes a uint8_t and returns a Boolean

Set MyPriority to inputted parameter

Set pins 4, 5, and 6 on Port M to outputs

Set rest of the pins to inputs

Initialize basket to 0

Initialize timerInterval to 1

Initialize Servo to pin 7 (T7) by using ADS12_Init

Initialize all the other pins on AD to outputs by using ADS12_Init

Initialize currentState to InitDefault

Light LEDs 1, 2, and 3

Check if post ES_Init to DefaultSM returns true

 Return true if no error

RunDefaultSM

Takes an ES_Event and returns an ES_Event

Check if ThisEvent.EventType is ES_TIMEOUT and ThisEvent.EventParam is 1

 Turn off LED (timerInterval) and increment timerInterval by 1

 if timerInterval is greater than 3

 Set timerInterval back to 1

 Post Failure to DefaultSM

 Send message 6

 else

 Set timer 1 to 15000 ms and start timer 1

If EventType is Basket 1, set basket = 1

If EventType is Basket0, set basket = 0

If EventType is Failure

 Turn off all LEDs (OffLED)

 Set timerInterval to 1

 Stop timer 1

 Set nextState = Lockdown

switch(CurrentState)

 case InitDefault:

 if EventType is ES_Init

 Set nextState to Lockdown

 case Lockdown:

 if EventType is BATID_FOUND

 Light LEDs 1, 2, and 3

 Set timer 1 to 15s and start timer 1

 Set nextState to WaitingForCode

 Send Message1

 case WaitingForCode:

 if EventType is CodeSuccess

 if basket is 1, light LED 4

 if basket is 0, light LED 5

 Set nextState to WaitingForIR

 case WaitingForIR:

 if EventType is IRDetected and EventParam is equal to basket

 Turn off LED 4 and 5

 send Message3

 set nextState to WaitingForBall

 if EventType is IRDetected and EventParam is not equal to basket

 send Message6

 send Failure to DefaultSM

 set timerInterval to 1

 stop timer 1

 case WaitingForBall:

 if EventType is BallSuccess

 set nextState to WaitingForAnalog1

 case WaitingForAnalog1:

 if EventType is AnalogCode and EventParam is 3

 set nextState to WaitingForAnalog2

 case WaitingForAnalog2:

 if EventType is AnalogCode and EventParam is 1

 set nextState to WaitingForAnalog3

 case WaitingForAnalog3:

 if EventType is AnalogCode and EventParam is 4

 Light LEDs 1, 2, and 3

 Send Message 4

 Set timerInterval to 1 and stop timer 1

 Call Celebration from Outputs.c

 Set basket to 0

 set nextState to Lockdown

set CurrentState to nextState

return ES_NO_EVENT

Outputs (.c)

Module level variables – uint8_t MyPriority

InitOutputs

Takes a uint8_t and returns a Boolean

Set MyPriority to inputted parameter

Set timer 6 to 500ms and start timer 6

Post ES_Init to OutputsSM

If successful, return true. Else return false.

RunOutputsSM

Takes an ES_Event and returns an ES_Event

If EventType is ES_TIMEOUT and EventParam is 6,

 Turn off all LEDs

PulseLED

Takes an integer (int i) and returns nothing

Set pin i to high

Set timer 6 to 500ms

Start timer 6

LightLED

Takes an integer (int i) and returns nothing

Set pin i to high (Port AD)

OffLED

Takes an integer (int i) and returns nothing

Set pin i to low (Port AD)

OffAll

Takes no parameters and returns nothing

Set all output pins to low (Port AD)

Celebration

Takes no parameters and returns nothing

Loop 5 times:

 Light LED 4 and 5

 Wait 700 ms

 Turn off LED 4 and 5

 Wait 300 ms

Wait (Blocking code only used for when no inputs should do anything)

Takes an integer (int ms) and returns nothing

Set time1 to current ES_Timer_GetTime

While (ES_Timer_GetTIme <= time1 + ms)

Event Checkers (.c)

checkMessage

Static variables – lastInputState

Local variables - currentInputState

Takes no arguments, returns a boolean

Input currentInputState by checking M pins.

If (currentInputState is not equal to lastInputState)

switch(currentInputState)

 case Message1:

 Post CodeSuccess to DefaultSM

 case Message2:

 Post BallSuccess to DefaultSM

 case Message3:

 Post Basket1 to DefaultSM

case Message4:

 Post Basket0 to DefaultSM

case Message6:

 Post Failure to DefaultSM

Set lastInputState to currentInputState.

return false

checkMorseEvents

Static variables – lastInputState

Local variables - currentInputState

Takes no arguments, returns a boolean

Input currentInputState by checking BatID pin (T0)

If (currentInputState is not equal to lastInputState)

 If(currentInputState is high)

 Post RisingEdge to MorseElementsSM and DecodeMorseSM

If(currentInputState is low)

 Post FallingEdge to MorseElementsSM and DecodeMorseSM

Set lastInputState to currentInputState

return false

checkIREvents

Static variables – lastIR1State, lastIR2State

Local variables – currentIR1State, currentIR2State

Takes no arguments, returns a Boolean

Input CurrentIR1State and CurrentIR2State by checking IR1 and IR2 pins (T2 & T3)

If (currentIR1State is not equal to lastIR1State)

 Post IRDetected with EventParam = 0 to DefaultSM

If (currentIR2State is not equal to lastIR2State)

 Post IRDetected with EventParam = 1 to DefaultSM

checkAnalogEvents

Takes no arguments, returns a Boolean

Read analog pin (T7), put value in x

If(x is between 100-150)

 Post AnalogCode with EventParam = 1 to DefaultSM

If(x is between 350-400)

 Post AnalogCode with EventParam = 2 to DefaultSM

If(x is between 600-650)

 Post AnalogCode with EventParam = 3 to DefaultSM

If(x is between 850-900)

 Post AnalogCode with EventParam = 4 to DefaultSM

MorseElements and DecodeMorse

Taken from Ed’s pseudo code given in lab 4

Changes listed here –

TestCalibration in MorseElements

if((100*FirstDelta/SecondDelta) <= 37 && (100*FirstDelta/SecondDelta) >= 27)

and

else if((100*FirstDelta/SecondDelta) >= 250 && (100*FirstDelta/SecondDelta) <= 400)

DecodeMorse in DecodeMorse

Completely changed to

if(MorseString is “-.” using strcmp)

 Post BATID_FOUND to DefaultSM

MessageSender (.c)

sendMessage

Takes an integer (int i) and does not return anything

switch(i)

 case 1: Raise PTM bits to Message 1 (0x1) and then add a very short delay

 case 2: Raise PTM bits to Message 2 (0x2) and then add a very short delay

 case 3: Raise PTM bits to Message 3 (0x4) and then add a very short delay

 case 4: Raise PTM bits to Message 4 (0x3) and then add a very short delay

 case 5: Raise PTM bits to Message 5 (0x5) and then add a very short delay

 case 6: Raise PTM bits to Message 6 (0x6) and then add a very short delay

 case 7: Raise PTM bits to Message 7 (0x7) and then add a very short delay

Robin Code
Event Checkers (.c)

checkMessage

Static variables – lastInputState

Local variables - currentInputState

Takes no arguments, returns a Boolean

Set MyPriority to inputted parameter

Input currentInputState by checking M pins.

If (currentInputState is not equal to lastInputState)

switch(currentInputState)

 case Message1:

 Post BATID_FOUND to DefaultSM and LEDCodeSM

 case Message2:

 Post StartButton to DefaultSM

 case Message3:

 Post IRDetected to DefaultSM

case Message4:

 Post AnalogCodeSuccess to DefaultSM

case Message5:

 Post Buzzer to OutputsSM

case Message6:

 Post Failure to DefaultSM and OutputsSM

Set lastInputState to currentInputState.

return false

checkButton1Events

Static variables – lastButton1State

Local variables – currentButton1State

Takes no arguments, returns a boolean

Input currentButton1State by checking Button1 pin (T0)

If (QueryButton1SM returns READY2SAMPLE)

 Post START_DEBOUNCE to ButtonFSM with EventParam = 0

 If(CurrentButton1State is not equal to LastButton1State)

 If(CurrentButton1State is not equal to 0)

 Post ButtonDown to DefaultSM and LEDCodeSM with EventParam = 1

Set lastButton1State to currentButton1State

return false

checkButton2Events

Static variables – lastButton2State

Local variables – currentButton2State

Takes no arguments, returns a boolean

Input currentButton2State by checking Button2 pin (T1)

If (QueryButton2SM returns READY2SAMPLE)

 Post START_DEBOUNCE to ButtonFSM with EventParam = 1

 If(CurrentButton2State is not equal to LastButton2State)

 If(CurrentButton2State is not equal to 0)

 Post ButtonDown to DefaultSM and LEDCodeSM with EventParam = 2

Set lastButton2State to currentButton2State

return false

checkButton3Events

Static variables – lastButton3State

Local variables – currentButton3State

Takes no arguments, returns a boolean

Input currentButton3State by checking Button3 pin (T2)

If (QueryButton1SM returns READY2SAMPLE)

 Post START_DEBOUNCE to ButtonFSM with EventParam = 2

 If(CurrentButton3State is not equal to LastButton3State)

 If(CurrentButton3State is not equal to 0)

 Post ButtonDown to DefaultSM and LEDCodeSM with EventParam = 3

Set lastButton3State to currentButton3State

return false

checkSwitch1Events

Static variables – lastSwitch1State

Local variables – currentSwitch1State

Takes no arguments, returns a boolean

Input current Switch1State by checking Switch1 pin (T3)

If (Query Switch1SM returns READY2SAMPLE)

 Post START_DEBOUNCE to ButtonFSM with EventParam = 3

 If(CurrentSwitch1State is not equal to LastSwitch1State)

 If(CurrentSwitch1State is not equal to 0)

 Post BallSuccess to DefaultSM with EventParam = 0

Set lastSwitch1State to currentSwitch1State

return false

checkSwitch2Events

Static variables – lastSwitch2State

Local variables – currentSwitch2State

Takes no arguments, returns a boolean

Input currentSwitch2State by checking Switch2 pin (T4)

If (QuerySwitch2SM returns READY2SAMPLE)

 Post START_DEBOUNCE to ButtonFSM with EventParam =4

 If(CurrentSwitch2State is not equal to LastSwitch2State)

 If(CurrentSwitch2State is not equal to 0)

 Post BallSuccess to DefaultSM with EventParam = 1

Set lastSwitch2State to currentSwitch2State

return false

checkLeverEvents

Static variables – lastLeverState

Local variables – currentLeverState

Takes no arguments, returns a boolean

Input currentLeverState by checking Lever pin (T5)

If (currentLeverState is not equal to 0)

 Post LeverDown to DefaultSM

If (QueryLeverSM returns READY2SAMPLE)

 Post START_DEBOUNCE to ButtonFSM with EventParam = 5

 If(CurrentLeverState is not equal to LastLeverState)

 If(CurrentLeverState is not equal to 0)

 Post LeverDown to DefaultSM and LEDCodeSM with EventParam = 0

Set lastLeverState to currentLeverState

return false

Outputs (.c)

Module level variables – uint8_t MyPriority

InitOutputs

Takes a uint8_t and returns a Boolean

Set MyPriority to inputted parameter

Set timer 6 to 500ms and start timer 6

Post ES_Init to OutputsSM

If successful, return true. Else return false.

RunOutputsSM

Takes an ES_Event and returns an ES_Event

if EventType is Failure

 PulseBuzzer for 2000ms

if EventType is ES_TIMEOUT and EventParam is 6,

 Turn off buzzer (AD7)

PulseBuzzer

Takes an integer (int i) and returns nothing

Set pin 7 to high (AD7)

Set timer 6 to i ms

Start timer 6

LightLED

Takes an integer (int i) and returns nothing

Set pin i to high (Port AD)

OffLED

Takes an integer (int i) and returns nothing

Set pin i to low (Port AD)

AllOff

Takes no parameters and returns nothing

Set all output pins to low (Port AD)

AllOn

Takes no parameters and returns nothing

Set all output pins to high (Port AD)

Celebration

Takes no parameters and returns nothing

Loop 5 times:

 Turn all LEDs on

 Wait 700 ms

 Turn all LEDs off

 Wait 300 ms

Wait (Blocking code only used for when no inputs should do anything)

Takes an integer (int ms) and returns nothing

Set time1 to current ES_Timer_GetTime

While (ES_Timer_GetTIme <= time1 + ms)

Servo

Takes an integer (int angle) and returns nothing

If angle is less than SERVOMIN, set angle to equal SERVOMIN

If angle is larger than SERVOMAX, set angle to equal SERVOMAX

Use Servo12_SetPulseWidth on the servo pin with 600+10*angle

MessageSender (.c)

void sendMessage(int i)

Takes an integer and does not return anything

switch(i)

 case 1: Raise PTM bits to Message 1 (0x1) and then add a very short delay

 case 2: Raise PTM bits to Message 2 (0x2) and then add a very short delay

 case 3: Raise PTM bits to Message 3 (0x4) and then add a very short delay

 case 4: Raise PTM bits to Message 4 (0x3) and then add a very short delay

 case 5: Raise PTM bits to Message 5 (0x5) and then add a very short delay

 case 6: Raise PTM bits to Message 6 (0x6) and then add a very short delay

 case 7: Raise PTM bits to Message 7 (0x7) and then add a very short delay

LEDCode (.c)

Module level variables – int n1, n2, n3, n4, LEDState CurrentState

n1, n2, n3, n4 are values of random LED code

InitLEDCode

Takes a uint8_t and returns a Boolean

Set MyPriority to inputted parameter

Set n1, n2, n3, and n4 to random numbers from 1-3

Initialize currentState to InitLEDCode

Post ES_Init to LEDCodeSM, and return true if successful, return false if else.

LEDCodeSM

Takes an ES_Event and returns an ES_Event

If EventType is Finished

 nextState = waitToStart

switch (currentState)

 case InitLEDCode:

 if EventType is ES_Init

 Set nextState to WaitToStart

 case WaitToStart:

 if EventType is BATID_FOUND

 Get new random numbers for n1, n2, n3, n4

 Call LEDSequence(n1, n2, n3, n4)

 Set nextState to WaitForFirstButton

 case WaitForFirstButton:

 if EventType is ButtonDown and EventParam is equal to n1

 Set nextState to WaitForSecondButton

 Else if EventParam is not equal to n1

 PulseBuzzer for 500 ms

 Set nextState to WaitForFirstButton

 case WaitForSecondButton:

 if EventType is ButtonDown and EventParam is equal to n2

 Set nextState to WaitForThirdButton

 Else if EventParam is not equal to n2

 PulseBuzzer for 500 ms

 Set nextState to WaitForFirstButton

 case WaitForThirdButton:

 if EventType is ButtonDown and EventParam is equal to n3

 Set nextState to WaitForFourthButton

 Else if EventParam is not equal to n3

 PulseBuzzer for 500 ms

 Set nextState to WaitForFirstButton

 case WaitForFourthButton:

 if EventType is ButtonDown and EventParam is equal to n4

 Set nextState to Idle

 Send CodeSuccess to DefaultSM

 Else if EventParam is not equal to n3

 PulseBuzzer for 500 ms

 Set nextState to WaitForFirstButton

 case Idle:

return ES_NO_EVENT;

getNewRand

Takes no parameters and returns nothing

Set n1, n2, n3, and n4 to new random numbers from 1 to 3

DefaultState (.c)

Module level variables – DefaultState CurrentState, uint8_t MyPriority, int angleServo, int basket, int

timerActive

InitDefaultSM

Takes a uint8_t and returns a Boolean

Set MyPriority to inputted parameter

Set pins 4, 5, and 6 on Port M to outputs

Set rest of the pins on T and M to inputs

Initialize basket to random number between 0 and 1

Initialize angleServo to SERVOMIN

Initialize timerActive to 0

If basket is 1, send Message 3

If basket is 0, send Message 4

Initialize currentState to InitDefault

Initialize all AD pins outputs by using ADS12_Init

Light LEDs 1, 2, and 3

Check if post ES_Init to DefaultSM returns true

 Return true if no error

RunDefaultSM

Takes an ES_Event and returns an ES_Event

Check if ThisEvent.EventType is ES_TIMEOUT and ThisEvent.EventParam is 7

 Set timerActive to 0

If EventType is Failure

 Turn off all LEDs (OffLED)

 PulseBuzzer for 2000ms

 Set nextState = Lockdown

 Post FINISHED to LEDCodeSM

switch(CurrentState)

 case InitDefault:

 if EventType is ES_Init

 Set nextState to Lockdown

 case Lockdown:

 if EventType is BATID_FOUND

 Randomize basket to 0 or 1

 Set angleServo to SERVOMIN and call Servo(angleServo)

 If basket is 1, send message 3

 If basket is 0, send message 4

 Set nextState to WaitingForCode

 Light LED 4

 case WaitingForCode:

 if EventType is CodeSuccess

 Send message 1

 Turn LED 4 off

 Set nextState to WaitingForIR

 case WaitingForIR:

 if EventType is IRDetected

 if basket is 1, light LED 5

 if basket is 0, light LED 6

 set nextState to WaitingForBall

 case WaitingForBall:

 if EventType is BallSuccess and EventParam is equal to basket

 Turn off LED 5 and 6

 Light LED 3

 Send message 2

 Set nextState to WaitingForAnalog

if EventType is BallSuccess and EventParam is not equal to basket

 Send message 6

 Turn off all LEDs

 PulseBuzzer for 2000ms

 Set nextState to Lockdown

 Post FINISHED to LEDCodeSM

 case WaitingForAnalog:

 if EventType is LeverDown and timerActive is 0

 Set timer 7 to 70ms and start timer 7

 Set timerActive to 1

 Set Servo to angleServo and increment angleServo

 If angleServo is smaller than SERVOMIN or bigger than SERVOMAX, set angleServo to

SERVOMIN/SERVOMAX

 If EventType is AnalogCodeSuccess

 Call Celebration

 Turn off all LEDs

 Set nextState to Lockdown

 Post FINISHED to LEDCodeSM

 Set angleServo and Servo to SERVOMIN

set CurrentState to nextState

return ES_NO_EVENT

